Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477372

RESUMO

Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.


Assuntos
Lâmina Nuclear , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Células HEK293 , Corpos de Inclusão/metabolismo , Lâmina Nuclear/metabolismo , Lâmina Nuclear/patologia
2.
Sci Rep ; 14(1): 6013, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472343

RESUMO

Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Analysis of known rupture determinants, including an automated quantitative analysis of nuclear lamina gaps, are consistent with CTDNEP1 acting independently of actin and nuclear lamina organization. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.


Assuntos
Actinas , Membrana Nuclear , Membrana Nuclear/metabolismo , Actinas/metabolismo , Movimento Celular , Lâmina Nuclear/metabolismo , Núcleo Celular/metabolismo
3.
Curr Opin Cell Biol ; 86: 102313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262116

RESUMO

The nuclear lamina (NL) is a crucial component of the inner nuclear membrane (INM) and consists of lamin filaments and associated proteins. Lamins are type V intermediate filament proteins essential for maintaining the integrity and mechanical properties of the nucleus. In human cells, 'B-type' lamins (lamin B1 and lamin B2) are ubiquitously expressed, while 'A-type' lamins (lamin A, lamin C, and minor isoforms) are expressed in a tissue- and development-specific manner. Lamins homopolymerize to form filaments that localize primarily near the INM, but A-type lamins also localize to and function in the nucleoplasm. Lamins play central roles in the assembly, structure, positioning, and mechanics of the nucleus, modulating cell signaling and influencing development, differentiation, and other activities. This review highlights recent findings on the structure and regulation of lamin filaments, providing insights into their multifaceted functions, including their role as "mechanosensors", delving into the emerging significance of lamin filaments as vital links between cytoskeletal and nuclear structures, chromatin organization, and the genome.


Assuntos
Lamina Tipo B , Lâmina Nuclear , Humanos , Laminas/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Lâmina Nuclear/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Filamentos Intermediários/metabolismo , Diferenciação Celular
4.
FEBS Lett ; 597(22): 2806-2822, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953467

RESUMO

Lamina-associated domains are large regions of heterochromatin positioned at the nuclear periphery. These domains have been implicated in gene repression, especially in the context of development. In mammals, LAD organization is dependent on nuclear lamins, inner nuclear membrane proteins, and chromatin state. In addition, chromatin readers and modifier proteins have been implicated in this organization, potentially serving as molecular tethers that interact with both nuclear envelope proteins and chromatin. More recent studies have focused on teasing apart the rules that govern dynamic LAD organization and how LAD organization, in turn, relates to gene regulation and overall 3D genome organization. This review highlights recent studies in mammalian cells uncovering factors that instruct the choreography of LAD organization, re-organization, and dynamics at the nuclear lamina, including LAD dynamics in interphase and through mitotic exit, when LAD organization is re-established, as well as intra-LAD subdomain variations.


Assuntos
Núcleo Celular , Lâmina Nuclear , Animais , Núcleo Celular/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Cromatina/genética , Cromatina/metabolismo , Membrana Nuclear , Heterocromatina/genética , Heterocromatina/metabolismo , Mamíferos/genética
5.
Curr Opin Cell Biol ; 85: 102280, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972529

RESUMO

The intermediate filament (IF) cytoskeleton supports cellular structural integrity, particularly in response to mechanical stress. The most abundant IF proteins in mature cardiomyocytes are desmin and lamins. The desmin network tethers the contractile apparatus and organelles to the nuclear envelope and the sarcolemma, while lamins, as components of the nuclear lamina, provide structural stability to the nucleus and the genome. Mutations in desmin or A-type lamins typically result in cardiomyopathies and recent studies emphasized the synergistic roles of desmin and lamins in the maintenance of nuclear integrity in cardiac myocytes. Here we explore the emerging roles of the interdependent relationship between desmin and lamins in providing resilience to nuclear structure while transducing extracellular mechanical cues into the nucleus.


Assuntos
Citoesqueleto , Filamentos Intermediários , Filamentos Intermediários/metabolismo , Laminas/metabolismo , Desmina/genética , Desmina/metabolismo , Citoesqueleto/metabolismo , Lâmina Nuclear/metabolismo
6.
Curr Opin Cell Biol ; 85: 102267, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871500

RESUMO

Lamins are nuclear intermediate filament proteins with important, well-established roles in humans and other vertebrates. Lamins interact with DNA and numerous proteins at the nuclear envelope to determine the mechanical properties of the nucleus, coordinate chromatin organization, and modulate gene expression. Many of these functions are conserved in the lamin homologs found in basal metazoan organisms, including Drosophila and Caenorhabditis elegans. Lamin homologs have also been recently identified in non-metazoans, like the amoeba Dictyostelium discoideum, yet how these proteins compare functionally to the metazoan isoforms is only beginning to emerge. A better understanding of these distantly related lamins is not only valuable for a more complete picture of eukaryotic evolution, but may also provide new insights into the function of vertebrate lamins.


Assuntos
Dictyostelium , Humanos , Animais , Laminas/metabolismo , Dictyostelium/metabolismo , Membrana Nuclear/metabolismo , Drosophila/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Caenorhabditis elegans/metabolismo , Lâmina Nuclear/metabolismo
7.
FEBS Lett ; 597(22): 2791-2805, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37813648

RESUMO

Nuclear lamins are type-V intermediate filaments that are involved in many nuclear processes. In mammals, A- and B-type lamins assemble into separate physical meshwork underneath the inner nuclear membrane, the nuclear lamina, with some residual fraction localized within the nucleoplasm. Lamins are the major part of the nucleoskeleton, providing mechanical strength and flexibility to protect the genome and allow nuclear deformability, while also contributing to gene regulation via interactions with chromatin. While lamins are the evolutionary ancestors of all intermediate filament family proteins, their ultimate filamentous assembly is markedly different from their cytoplasmic counterparts. Interestingly, hundreds of genetic mutations in the lamina proteins have been causally linked with a broad range of human pathologies, termed laminopathies. These include muscular, neurological and metabolic disorders, as well as premature aging diseases. Recent technological advances have contributed to resolving the filamentous structure of lamins and the corresponding lamina organization. In this review, we revisit the multiscale lamin organization and discuss its implications on nuclear mechanics and chromatin organization within lamina-associated domains.


Assuntos
Filamentos Intermediários , Lâmina Nuclear , Animais , Humanos , Lâmina Nuclear/metabolismo , Filamentos Intermediários/metabolismo , Laminas/genética , Laminas/química , Laminas/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Membrana Nuclear , Mamíferos/genética , Mamíferos/metabolismo
8.
Curr Opin Cell Biol ; 85: 102234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37666024

RESUMO

At first glance the nucleus is a highly conserved organelle. Overall nuclear morphology, the octagonal nuclear pore complex, the presence of peripheral heterochromatin and the nuclear envelope appear near constant features right down to the ultrastructural level. New work is revealing significant compositional divergence within these nuclear structures and their associated functions, likely reflecting adaptations and distinct mechanisms between eukaryotic lineages and especially the trypanosomatids. While many examples of mechanistic divergence currently lack obvious functional interpretations, these studies underscore the malleability of nuclear architecture. I will discuss some recent findings highlighting these facets within trypanosomes, together with the underlying evolutionary framework and make a call for the exploration of nuclear function in non-canonical experimental organisms.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Trypanosoma , Evolução Molecular , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Trypanosoma/metabolismo , Laminas/metabolismo , Núcleo Celular/metabolismo , Lâmina Nuclear/metabolismo
9.
J Exp Bot ; 74(18): 5500-5513, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37503569

RESUMO

The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell.


Assuntos
Arabidopsis , Solanum lycopersicum , Lâmina Nuclear/metabolismo , Solanum lycopersicum/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
10.
FASEB J ; 37(8): e23116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498235

RESUMO

Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.


Assuntos
Senilidade Prematura , Laminopatias , Humanos , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Proteostase , Núcleo Celular/metabolismo , Laminas/genética , Laminas/metabolismo , Laminopatias/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutação , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo
11.
Nat Plants ; 9(7): 1081-1093, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37400513

RESUMO

The nuclear lamina is a complex network of nuclear lamins and lamin-associated nuclear membrane proteins, which scaffold the nucleus to maintain structural integrity. In Arabidopsis thaliana, nuclear matrix constituent proteins (NMCPs) are essential components of the nuclear lamina and are required to maintain the structural integrity of the nucleus and specific perinuclear chromatin anchoring. At the nuclear periphery, suppressed chromatin overlapping with repetitive sequences and inactive protein-coding genes are enriched. At a chromosomal level, plant chromatin organization in interphase nuclei is flexible and responds to various developmental cues and environmental stimuli. On the basis of these observations in Arabidopsis, and given the role of NMCP genes (CRWN1 and CRWN4) in organizing chromatin positioning at the nuclear periphery, one can expect considerable changes in chromatin-nuclear lamina interactions when the global chromatin organization patterns are being altered in plants. Here we report the highly flexible nature of the plant nuclear lamina, which disassembles substantially under various stress conditions. Focusing on heat stress, we reveal that chromatin domains, initially tethered to the nuclear envelope, remain largely associated with CRWN1 and become scattered in the inner nuclear space. By investigating the three-dimensional chromatin contact network, we further reveal that CRWN1 proteins play a structural role in shaping the changes in genome folding under heat stress. Also, CRWN1 acts as a negative transcriptional coregulator to modulate the shift of the plant transcriptome profile in response to heat stress.


Assuntos
Arabidopsis , Lâmina Nuclear , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Membrana Nuclear/metabolismo , Laminas/genética , Laminas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
12.
FEBS Lett ; 597(22): 2782-2790, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37339933

RESUMO

The nuclear envelope plays an essential role in organizing the genome inside of the nucleus. The inner nuclear membrane is coated with a meshwork of filamentous lamin proteins that provide a surface to organize a variety of cellular processes. A subset of nuclear lamina- and membrane-associated proteins functions as anchors to hold transcriptionally silent heterochromatin at the nuclear periphery. While most chromatin tethers are integral membrane proteins, a limited number are lamina-bound. One example is the mammalian proline-rich 14 (PRR14) protein. PRR14 is a recently characterized protein with unique function that is different from other known chromatin tethers. Here, we review our current understanding of PRR14 structure and function in organizing heterochromatin at the nuclear periphery.


Assuntos
Cromatina , Heterocromatina , Animais , Cromatina/genética , Cromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Núcleo Celular/metabolismo , Lâmina Nuclear/química , Lâmina Nuclear/metabolismo , Membrana Nuclear , Mamíferos/genética
13.
Cells ; 12(9)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37174634

RESUMO

Oxidative stress is a physiological condition that arises when there is an imbalance between the production of reactive oxygen species (ROS) and the ability of cells to neutralize them. ROS can damage cellular macromolecules, including lipids, proteins, and DNA, leading to cellular senescence and physiological aging. The nuclear lamina (NL) is a meshwork of intermediate filaments that provides structural support to the nucleus and plays crucial roles in various nuclear functions, such as DNA replication and transcription. Emerging evidence suggests that oxidative stress disrupts the integrity and function of the NL, leading to dysregulation of gene expression, DNA damage, and cellular senescence. This review highlights the current understanding of the interplay between oxidative stress and the NL, along with its implications for human health. Specifically, elucidation of the mechanisms underlying the interplay between oxidative stress and the NL is essential for the development of effective treatments for laminopathies and age-related diseases.


Assuntos
Laminopatias , Lâmina Nuclear , Humanos , Lâmina Nuclear/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Envelhecimento , Laminopatias/metabolismo
14.
Nat Commun ; 14(1): 3101, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248263

RESUMO

During preimplantation development, contractile forces generated at the apical cortex segregate cells into inner and outer positions of the embryo, establishing the inner cell mass (ICM) and trophectoderm. To which extent these forces influence ICM-trophectoderm fate remains unresolved. Here, we found that the nuclear lamina is coupled to the cortex via an F-actin meshwork in mouse and human embryos. Actomyosin contractility increases during development, upregulating Lamin-A levels, but upon internalization cells lose their apical cortex and downregulate Lamin-A. Low Lamin-A shifts the localization of actin nucleators from nucleus to cytoplasm increasing cytoplasmic F-actin abundance. This results in stabilization of Amot, Yap phosphorylation and acquisition of ICM over trophectoderm fate. By contrast, in outer cells, Lamin-A levels increase with contractility. This prevents Yap phosphorylation enabling Cdx2 to specify the trophectoderm. Thus, forces transmitted to the nuclear lamina control actin organization to differentially regulate the factors specifying lineage identity.


Assuntos
Actinas , Proteínas Adaptadoras de Transdução de Sinal , Humanos , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lâmina Nuclear/metabolismo , Proteínas de Ciclo Celular , Proteínas de Sinalização YAP , Blastocisto/metabolismo , Laminas
15.
Nucleus ; 14(1): 2197693, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37017584

RESUMO

Chromatin regions that interact with the nuclear lamina are often heterochromatic, repressed in gene expression, and in the spatial B compartment. However, exceptions to this trend allow us to examine the relative impact of lamin association and spatial compartment on gene regulation. Here, we compared lamin association, gene expression, Hi-C, and histone mark datasets from cell lines representing different states of differentiation across different cell-type lineages. With these data, we compare, for example, gene expression differences when a B compartment region is associated with the nuclear lamina in one cell type but not in another. In general, we observed an additive rather than redundant effect of lamin association and compartment status. But, whether compartment status or lamin association had a dominant influence on gene expression varied by cell type. Finally, we identified how compartment and lamin association influence the likelihood of gene induction or repression in response to physicochemical treatment.


Assuntos
Lamina Tipo A , Lâmina Nuclear , Lâmina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Cromossomos/metabolismo , Lamina Tipo B/metabolismo
16.
Curr Cardiol Rep ; 25(5): 307-314, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37052760

RESUMO

PURPOSE OF REVIEW: In this review, we explore the chromatin-related consequences of laminopathy-linked mutations through the lens of mechanotransduction. RECENT FINDINGS: Multiple studies have highlighted the role of the nuclear lamina in maintaining the integrity of the nucleus. The lamina also has a critical role in 3D genome organization. Mutations in lamina proteins associated with various laminopathies result in the loss of organization of DNA at the nuclear periphery. However, it remains unclear if or how these two aspects of lamin function are connected. Recent data suggests that unlinking the cytoskeleton from the nuclear lamina may be beneficial to slow progress of deleterious phenotypes observed in laminopathies. In this review, we highlight emerging data that suggest interlinked chromatin- and mechanical biology-related pathways are interconnected in the pathogenesis of laminopathies.


Assuntos
Núcleo Celular , Mecanotransdução Celular , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Cromatina/genética , Cromatina/metabolismo , Biofísica
17.
Nat Commun ; 14(1): 1602, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959177

RESUMO

Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Actinas/genética , Actinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Núcleo Celular/metabolismo , Expressão Gênica , Integrinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo , Neoplasias Cutâneas/metabolismo
18.
Aging (Albany NY) ; 15(4): 898-904, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36806186

RESUMO

Aging is an inevitable fact of life which brings along a series of age-associated diseases. Although medical innovations and patient care improvement have increased our life expectancy, the rate of age-associated diseases have also increased. Nervous system is specifically prone to these diseases that cause neuronal loss in different anatomical regions. Alzheimer's disease is the best-known example of age-associated illnesses and is diagnosed by accumulation of intracellular Neurofibrillary tangles and extracellular Amyloid Plaques resulting in dementia. However, therapeutic attempts aiming at the removal of these plaques and tangles to reverse the cognitive decline have generally failed in human patients and may compromise the patient's health. We have learnt that interruption of neuronal housekeeping systems such as autophagy contributes to formation of these aggregates, and therefore understanding the underlying mechanisms that lead to failure of these endogenous protective systems may provide valuable information and novel therapies. The house keeping systems are delicately regulated through gene expression and chromatin modifications in the nucleus, however, the contribution of this largest cellular organelle in pathophysiology of the disease has been overlooked. During the last few years, a wealth of information on neuronal nucleus has emerged that provides a strong rationale for examining its contribution to the pathophysiology of the disease. In this research perspective, I have attempted to summarize the latest research on neuronal nucleus, with a special focus on nuclear lamina damage and its downstream events to rationalize the need for focusing on the neuronal nucleus as a therapeutic target.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/metabolismo , Envelhecimento , Lâmina Nuclear/metabolismo , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo
19.
Genes (Basel) ; 14(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36833261

RESUMO

The nuclear lamina provides a repressive chromatin environment at the nuclear periphery. However, whereas most genes in lamina-associated domains (LADs) are inactive, over ten percent reside in local euchromatic contexts and are expressed. How these genes are regulated and whether they are able to interact with regulatory elements remain unclear. Here, we integrate publicly available enhancer-capture Hi-C data with our own chromatin state and transcriptomic datasets to show that inferred enhancers of active genes in LADs are able to form connections with other enhancers within LADs and outside LADs. Fluorescence in situ hybridization analyses show proximity changes between differentially expressed genes in LADs and distant enhancers upon the induction of adipogenic differentiation. We also provide evidence of involvement of lamin A/C, but not lamin B1, in repressing genes at the border of an in-LAD active region within a topological domain. Our data favor a model where the spatial topology of chromatin at the nuclear lamina is compatible with gene expression in this dynamic nuclear compartment.


Assuntos
Núcleo Celular , Cromatina , Hibridização in Situ Fluorescente , Cromatina/metabolismo , Núcleo Celular/genética , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Epistasia Genética
20.
Subcell Biochem ; 102: 7-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36600128

RESUMO

Nuclear structure influences genome architecture, which contributes to determine patterns of gene expression. Global changes in chromatin dynamics are essential during development and differentiation, and are one of the hallmarks of ageing. This chapter describes the molecular dynamics of chromatin structure that occur during development and ageing. In the first part, we introduce general information about the nuclear lamina, the chromatin structure, and the 3D organization of the genome. Next, we detail the molecular hallmarks found during development and ageing, including the role of DNA and histone modifications, 3D genome dynamics, and changes in the nuclear lamina. Within the chapter we discuss the implications that genome structure has on the mechanisms that drive development and ageing, and the physiological consequences when these mechanisms fail.


Assuntos
Cromatina , Lâmina Nuclear , Cromatina/genética , Cromatina/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Genoma , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...